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Abstract 
By applying the concepts of statistical dynamical theory 
and the boundary-value Green-function technique, an 
analytical expression in the form of a series expansion 
has been obtained for the coherent contribution to the 
integrated power in a finite crystal geometry. The 
solution suggests that three-beam interference is likely 
to cause observable perturbations also in crystals with a 
high degree of imperfection. Owing to a first-order 
dependence on the invariant triplet phase sum, profile 
reversal may occur in cases where this sum is close to 
90 ~. The result may serve as an experimental check on 
statistical dynamical parameters. 

1. Introduction 
In a previous paper, we have investigated the influence of 
scattering geometry on the three-beam profiles for finite 
perfect crystals (Thorkildsen & Larsen, 1998), hereafter 
denoted TL-I. Such crystals represent idealized probing 
systems because the scattering is purely coherent - and it 
is the coherent wave fields that carry the invariant phase 
information. 

However, for real structural studies, the crystals 
undergoing investigations are generally not perfect - 
i.e. they possess distortions of various kinds. Among the 
crystallographic community, the concept of 'mosaicity' 
(Darwin, 1922) has become popular in describing crystal 
imperfections - leading, in the two-beam case, to the 
division of multiple-scattering effects into primary and 
secondary extinction. Throughout the last decades, 
however, a lot of effort has been put into developing 
and improving the theories in order to obtain an overall 
unified description of extinction in a crystal of any degree 
of imperfection (Kato, 1976a, 1980a 1982; A1 Haddad & 
Becker, 1988; Guigay & Chukhovskii, 1992; Becker & 
A1 Haddad, 1992; Davis, 1994). 

In the three-beam case, little work has been performed 
in order to establish/implement mathematical theories 
assessing the influence of crystal imperfection on for 
instance the ~p-scan profiles. Nevertheless, numerous 
experimental studies (Post, 1977; Chapman et al., 1981 ; 
Chang, 1982; Thorkildsen & Mo, 1982, 1983; Hauback 
& Mo, 1988; Hfimmeretal., 1991; Weckert et al., 1993) 
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have shown that phase information indeed can be 
extracted from 'mosaic' crystals too. 

Thorkildsen (Hauback et al., 1990) adopted a 
procedure similar to that of Moon & Shull (1964) and 
solved the Zachariasen-Hamilton equations for the three- 
beam case in a finite model crystal, thereby obtaining a 
correction formalism for multiple-diffraction effects to be 
used in crystal structure analysis. Being based on 
intensity coupling equations, this accounts for the pure 
incoherent scattering only and thus cannot describe the 
characteristic asymmetry of the ~p-scan profiles. The 
mosaic crystal concept is implemented into the theory by 
assigning a distribution function, W~(A), for the excita- 
tion error] (Thorkildsen, 1983). W,~(A), which may be 
taken as a Lorentzian or a Gaussian, thus describes the 
smearing effects due to crystal imperfection. However, 
using this approach, it has not been possible to assign a 
single distribution function that simultaneously accounts 
for the magnitude of the intensity perturbation for a large 
set of three-beam situations. 

An interesting development is due to Kohn and co- 
workers (Kohn, 1988; Kohn & Samoilova, 1992). Here, 
three-beam diffraction concepts are used to obtain a 
depth profile of the crystal distortions. Crystal imperfec- 
tions were introduced by assuming a homogeneous strain 
along the surface. Using an adequate mathematical 
model for the lattice phase factor (Afanasev & Kohn, 
1971), the possibility of probing/measuring the deforma- 
tion at a given depth of a crystal~ was demonstrated by 
computer simulations. In this work, a weak secondary 
lattice node was excited within the angular region of total 
reflection for the primary diffracted beam. 

Another approach, advocating the concept of the so- 
called 'virtual Bragg scattering' is due to Shen (1986). 
Here, a perturbative approach is devised but no attempt to 
describe the crystal imperfection is made. 

In the present work, we will adopt the concepts of the 
statistical dynamical theory in describing the crystal 

~ Owing to the misalignment of  the perfect mosaic blocks, we cannot 
associate a single excitation error with a reciprocal-lattice point. A is a 
measure of  the deviation from the mean excitation error. The function 
W,~(A) may also incorporate the effect of  finite mosaic block sizes. 
++ Bragg-Bragg scattering geometry from a semi-infinite crystal plate is 
assumed. 
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imperfections. We will confine ourselves to a case where 
the approximations inherent in the Takagi-Taupin theory 
(Takagi, 1962, 1969; Taupin, 1964) are valid and we 
neglect effects arising from polarization and photoelectric 
absorption (Larsen & Thorkildsen, 1998). We consider 
the interaction due to the coherent wave fields alone. 
Additional contributions from incoherent scattering 
events are thus not taken into account• The present 
treatment should however warrant an analysis of the 
relative dynamical perturbations in ~p-scan profiles from 
imperfect crystals. 

2. Elements of statistical dynamical theory 

In 1980, Kato published the so-called statistical dynami- 
cal theory (Kato, 1980a,b,c) - an attempt to unify the 
theories describing primary and secondary extinction by 
treating crystal imperfections as 'statistical features' 
initiating incoherent scattering. The same author later 
(Kato, 1991, 1994) put forward a rigorous mathematical 
foundation for the theory. Several other authors (A1 
Haddad & Becker, 1988; Becker & AI Haddad, 1989; 
Guigay, 1989; Becker & A1 Haddad, 1990, 1992; Guigay 
& Chukhovskii, 1992) have discussed and modified 
different aspects concerning Kato's original work. 

The Takagi-Taupin equations for the three-beam case 
in an imperfect crystal may be written in the following 
manner (Larsen, 1997): 

OOo/ OS o = iqg ohKohO h + iqg ogKogbg 
• 

O[)h/OS h = iqghoKhob o -t- lq)hgKhgOg (1) 

oDg/Osg = i~OgoXgoDo + iqgghKghb h. 

The coupling parameters (neglecting polarization) are 
given by 

Kpq = (re)~/ Vc)Fp_ q = ( l / Apq), (2) 

where r e is the classical electron radius, V c is the unit-cell 
volume, Fp_q is the structure factor associated with the 
reflection p - q and Apq is the corresponding extinction 
length. 

The lattice phase factor has the following form: 

qgpq = ~Opq(r) : exp[--2:ri(q -- p)- u(r)], (3) 

where u(r) is the displacement field at a position r. 
The amplitude transformation for the electrical 

displacement is given by Dp :[)peXp(27riy~qflqSq) 
(Thorkildsen, 1990; Thorkildsen & Larsen, 1998). /~p is 
the deviation parameter: 

~p = Ilkpll - k = C~p - K~yp -½KXo. (4) 

K -  1/~. is the wave number of the incoming vacuum 
wave, K o. k/, is a crystal wavevector and Ilkp II indicates 
its norm. p is a reciprocal-lattice vector, k = K(1 + ½ Xo) 

is the mean wavevector within the crystal. 
Up = [[Kp[[- K is the excitation error associated with 
reflection p, whereas 8, the Anpassung, is treated in the 
kinematical limit by putting 3 = - X o / 2 y o .  Thus, 
f l o - - %  = 0 (Authier, 1996). y; is a direction cosine, 
expressed by yp = ft. §p, where n is a unit normal vector 
to the entrance surface, directed into the crystal. §p is a 
unit vector parallel to Kp - K o + p and Sp is a positional 
coordinate measured along ,]p. 

It is convenient to separate the contributions to the 
electrical displacement into two parts: (Dp), which 
represents the ensemble average; and 3Dp, representing 
the 'fluctuating' part. I.e. 

b, : <bp> + (5) 

with p ~ {o, h, g} and (~/)p) = 0. The lattice phase factor 
may be split up in a similar way: 

~Opq = (~Opq) + &ppq. (6) 

The 'intensity' is then defined ({f) by 

<lb, : i<bp>l + <l bpl > : + (7) 

where Ip' and Ip are the coherent and incoherent 
intensities, respectively. 

The incoherent intensity may be built either from 
incoherent scattering contributions in the vicinity of the 
entrance surface or partly from coherent contributions 
where phase correlation is subsequently lost in scattering 
events following the propagation of the beams within the 
crystal. Following A1 Haddad & Becker (1988), Becker 
& Al Haddad (1992) and Kato (1980c), the incoherent 
part may again be split into a finite number of different 
terms (n) according to: 

= + E (8) 
n 

where Ip '° is the purely incoherent contribution and Ip'" is 
the mixed coherent and incoherent contributions (n -7/= 0). 

The integrated power is similarly decomposed accord- 
ing to 

in which the incoherent integrated power may be 
partitioned: 

~[3'p : ,~y~O .~_ .A/[p, (10) 

n where .A4p = )-~, .Mp corresponds to the mixed terms. 
In analogy with Kato (1980b), we introduce a 

generalized long-range-order parameter, Epq (often 
called 'the static Debye-Waller factor'): 

Epq = (qgpq) = (1/v) f d r  qgpq(r), (11) 
v 

v being the crystal volume. According to Becker & Al 
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Haddad (1989), equation (11) may be written as 

Epq = f du p(u) exp[-2n'i(q - p) .  u], (12) 

where p(u) is the probability density function]" of the 
displacement field, u. Generally, we have E p q  ~__ 1. The 
value E p q  = 1 corresponds to the perfect-crystal case, 
while the l i m i t  Epq ~ 0 represents the 'ideal imperfect' 
crystal. 

It is appropriate also to introduce a spatial correlation 
function of the phases, fpq,rs(t), which is assumed to be a 
real function (Becker & A1 Haddad, 1989): 

Lq,rs(t) def (1 IV) f dr ~Opq(r)~O*s(r + t) 
v 

= (~pq(r)~s(r + t)), (13) 

where p, q, r, s ~ {o, g, h}. If t = [tl is small compared 
with the crystal dimensions, this may be written (Becker 
& A1 Haddad, 1989, 1990) 

Lq,rs(t) ~ EpqErs -t- (SCppq(r)Sqgr*(r -F t)) 

def EpqErs q_ (1 -- EpqErs)gpq,rs(t ). (14 )  

gpq,rs(t), the intrinsic correlation function (Kato, 1980a) 
satisfies gpq ~s(0) = 1. 

A statistical hypothesis is then commonly introduced, 
stating that the diffracted power does not depend on the 
details of the displacement field u(r) but only on its 
statistical properties. This implies the existence of an 
ensemble of (hypothetical) crystals having different 
displacement fields but the same distribution function, 
p(u), and intrinsic correlation function, gpq.rs(t). If such 
an assumption is valid, it is possible to describe the 
intensities of the transmitted and diffracted wave fields as 
an average over all crystals in the ensemble, q)pq(r) is thus 
classified as an ergodic and homogeneous stochastic 
process (Ross, 1993). 

t Usually taken as a Gaussian. 

f(t) 
l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 t 
F i g . .  Schematic behaviour of the correlation function. Short-range and 

long-range parameters After Kato (1982). 

Finally, assuming spatial homogeneity, 
gpq.rs(t) ~ gpq,rs(t) and p(u) --+ p(u), it is convenient to 
introduce the short-range parameter, rpq ..... defined by 

~pq,rs = f d t  g p q , r s ( l ) .  ( 1 5 )  
o 

r represents the distance along which different optical 
routes lose their mutual phase coherence. The relation 
between r, E and f ( t )  is schematically illustrated in Fig. 
1. According to Becker & AI Haddad (1989), the 
decomposition scheme of equation (14) is possible for 
crystals with a high degree of perfection. In that case, the 
correlation length ~pq,rs becomes a constant, r. 

3. Propagation equations for the coherent waves in the 
three-beam case 

From equations (6) and (11), we may straightforwardly 
write the Takagi-Taupin equations for the coherent part 
of the diffracted wave fields in the three-beam case: 

O(Do) /OSo = #cohEoh (Dh) + 

+ ixogEog (D e) 

o(£)h) /Os h = ixhoEho (Do) + 

+ ixhgEhg(Og) 

O ( b g ) / O S g  = ixgoEgo(Do) + 

+ iXghEgh ([)h) 

iXoh (3~OohDh) 

+ iKog(SqgogOg ) (16) 

iKho (Sqghobo } 

+ iXhg(3~OhgDg) (17) 

i K g o ( a q ) g o b o )  

+ iKgh(a~OghDh). (18) 

The boundary-value Green functions for the set of 
coupled first-order partial differential equations may be 
obtained by integration. Eg.  for (Do)" 

(bo(so, Sh, S~)) 
,o 

= 3(sh)8(Sg) + iXohEoh f ~'o (bh(S'o' Sh' Sg)} 

s o 

+ iXoh f ds'o (~Ooh(S'o, sh, sg)Dh(so, sh, %)) 
~(sh.sg) 

S o 
~ I + ixogEog f ~'o (Og(so, Sh, Sg)} 

.~o ( s h ,.~'~ ) 
S o ~ ,, 

+ iXog f ds' o (~q)og(S!o , Sh, sg)Dg(so, Sh, Sg)}. 
Sho(Sh,.~g) 

(19) 

S~ denotes a boundary point. Analogous expressions are 
obtained for (Dh(s o, s h, %)) and (Dg(s o, s h, sg)). We have 
applied a point source of unit strength at the entrance 
surface associated with the incident-beam direction, K o. 
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Thus, 

(bo(Sbo(Sh , Sg), S h, Sg)) = ~(Sh)C~(Sg ) 

(bh(So,  sb(So , Sg), Sg)) : 0 (20 )  

b ([)g(So, Sh, Sg(So, Sh))) = O. 

Using (19) and the corresponding integral expressions 
for (Dh(s o, s h, ss)) and ( D g ( s  o, s h, Sg)) in equations (16)- 
(18), we obtain after a lengthybut  straightforward 
calculation (Larsen, 1997) for the term iXoh(&PohDh)" 

iXoh (SqgohDh) 
S" h 

= - XohXhoEho f ds' h (¢~q)oh(So, Sh, Sg)bo(So,  Sth , Sg)) 
(so,Sg) 

Sh 

- XohXho f ds'h ((~oh(So , S h, Sg)~ho(So ,  SIh , Sg) 
.~(s,,.sg) 

X Oo(s  o, s~h, Sg)) 

Sh 

-- XohXhgEhg f d J  h (~oh(So ,  Sh, sg)Dg(so,  S~h , Sg)) 
~h(So,Sg) 

Sh 
- XohXhg f ds'h (¢~qgoh(S o, S h, Sg)S~hg(So, Sth, Sg) 

,,~(So,Sg) 

× Dg(So, S'h, sg)). (21) 

In order to get a set of equations that is easier to handle, 
some approximations are called for. The values of 
{Dp(s o, s h, Sg)} are determined by the scattering events 
along the successive positions (S'o,S'h,S'g) along the 
optical route through the crystal. Following Becker & 
A1 Haddad (1992), phase coherence is assumed to be lost 
outside nearest-neighbour scattering points. This approx- 
imation allows us to neglect the correlation between the 
fields and the phase fluctuations, hence we omit all terms 
proportional to Epq in (21): 

iXoh ( ~(]9 ohb h ) 

.~ _ XohXho(bo)(l -- EohEho ) 

-- XohKhg([)g)(1 -- EohEhg ) 

Sh 

f dS'h goh.ho(S'h) 
s~(so.s x) 

Sh 

f dS'h goh.hg(S'h)" 
,,~ (s ,, ,sg ) 

(22) 

We further assume {(Dp)} to have negligible variations 
over a distance ~pq,rs and perform the integrations in 
equation (22) using the assumption (Sp -Sp b) > rpq,r,,., c f  
Guigay & Chukhovskii (1992) for a more thorough 
discussion of this approximation. By applying the 
definition of rpq ..... c f  (15), we may then write: 

iXoh (~Ooh Dh ) "~ - Xoh Xho (Do) ( 1 - -  Eoh gho) r o b ,  ho 

-- XohKhg (bg)( l -- EohEhg)roh,hg. (23) 

Analogous expressions may be obtained for the other 
members of the se t  {il(pq(t~qgpq[)q)}. In order to further 
simplify the mathematical treatment, we suppose that the 
long- and short-range parameters may be treated as 
isotropic quantities with respect to the involved reflec- 
tions. I . e .  Epq ~ E and 72pq,r s ~ I'. By inserting these 
expressions into equations (16)-(18), we obtain the 
statistical dynamical formulation of the Takagi-Taupin 
equations, which, within the given approximations are: 

O(Do) / Os o = iXohE (Oh ) - -  (1 -- E2)r(XohXho (Do) 

-Jl- X o h X h g ( b g )  ) Jr" i K o g E ( [ ) g )  - -  (1 - E 2) 

× T,(XogXg o (Do) -~- KogKg h (bh ) )  (24) 

O(Dh) /Os h = iXhoE([9o) - -  ( 1  - -  E2)r(XhoXoh ([)h) 

+ X h o X o g ( b g ) )  + i x h g E ( l ) g  ) - -  (1 - E 2) 

X r(XhgXgh([)h) n t- XhgXgo([)o)) (25) 

O(Dg) /OSg = ixgoE(D o) - (1 - E2)r(XgoXog(Dg) 

+ XgoXoh(bh)) + ixghE(bh) -- (1 -- E 2) 

X ~'(XghKhg(bg ) -~- XghXho(bo)).  (26) 

The condition of validity of equations (24)-(26) becomes 
(Becker & A1 Haddad, 1992) 

r << A p q / E .  (27) 

Equations (24)-(26) may more conveniently be written in 
the following way: 

ODo/OS o = (ixohE - KogKgh#e)b h "~ ( i x o g E -  KohKhg#e)bg 

- -  (XohXho "71- X o g X g o ) # e b  o (28) 

3bh /OS  h --  (ixhoE _ KhgKgo#e)bo _off (iXhg E _ KhoKog#e)bg 
~ 

- (XhoXoh + XhgXgh)tx~D h (29) 

3Dg/3Sg = (ixgoE - XghXho#e)Do + ( i K g h E  - -  KgoKohlZe)D h 
~ 

__ (KgoKog Af- K g h K h g ) # e V g "  (30) 

From this stage, we omit the () brackets - the 
displacement amplitudes are implicitly considered to be 
ensemble averaged quantities. We have also defined the 
'effective absorption coefficient', #e, having the dimen- 
sion of length: 

def 
/z e = (1 --  E2)z .  ( 3 1 )  

We then introduce the following transformation for the 
displacement amplitudes: 

br -- Dr eXp [--lJe ~--~ ~-~ KpqKqpSp]. (32) 
p qCp 
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Applying this to equations (28)-(30), we get: 

ODo/OS o = (itCohE -- tCogKghlZe)D h 

+ (i~cogE -- KohKhg~e)Dg 

OOh/OS h = (iKhoE -- KhgKgo#e)O o 

+ (iKhgE -- KhoKog#e)Dg 

aDg/asg = ( i K g o g -  KghKho#e)D o 

"JI- ( i K g h E -  KgoKohl£e)D h . 

The equations are compactly written as 

• i-,(+) ODo/OS o = i~CohF(u-)Dh + lKog, v Dg 
ODh/OSh = lKho" "u~'(+)Do + ilChgr'(-)Dg 

aD~/OSg = ixgor'~-)Do + i%hr(w+)Dh 

with 

l-'(m +) = E + i ( T / m ) #  e 

F(m -) = E + i(T*/m)lZe, 

where m e {u, v, w}, 

U = KohKho 

12 --- KogKg ° 

W = KhgKgh, 

So 

Fig. 2. Scattering and crystal geometry for the Laue-Laue case. 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

and, neglecting resonant scattering, 

T = XohXhgXg o = Ixhgll%ollxohl exp(iq~z), (40) 

~b z being the invariant triplet phase sum: 

~E dej q~oh "~- ~hg -Jr- q~go" (41) 

The field amplitudes are then formally obtained by 
integration. 

In direct analogy with TL-I, it is convenient to 
introduce a set of linear operators £.m(s) where --pq , 
(s) • {(+), (-)}:  

sp 
m(S) iKpqI'(Sm ) f ds~ ' (42) ~;q  Dq(So, Sh, Sg ) ---- Dq(sp, {Sq}). 

4 

The solutions may therefore be expressed in the 
following form: 

_ f,u(-) N /..v(+) 13 Do D~ b) + ~"oh ~'h "~- -og  --g 

Dh n(b) u(+) w(-) (43) = "-'h + £ho Do + £'hg Dg 
= pw(+) N Dg Dtg b) + £~o)Do + "-'gh "-'h 

with boundary conditions identical to (20). 
The set of equations was solved for a finite crystal 

Laue-Laue case, c f  Fig. 2, by the method presented in 
TL-I. That is, by obtaining a series expansion for the 
boundary-value Green functions and performing integra- 
tions term by term over the entrance and exit surfaces of 
the crystal. An extensive coding scheme was adopted for 
M A T H E M A T I C A ~  (Thorkildsen, 1990; Larsen, 1997) in 
order to perform these operations and ease the sub- 
sequent algebraic manipulations. A detailed description 
for the present case can be found in Larsen (1997). 

4 .  R e s u l t s  

The results presented below are in terms of integrated 
power ,  Ph, where an additional integration over the 
deviation from the Bragg condition, A0oh , for the power, 
Ph, of the primary reflection has been carried out 
(Thorkildsen & Larsen, 1998). 

o~ 
~h = f dA0oh eh(AOoh). (44) 

Owing to the increasing complexity, the series expansion 
was terminated after the third order - thus yielding the 
important AuJhellung and Umweganregung  terms. 

It is convenient to express the integrated power in the 
following way: 

Ph --" Iolzhol2vzlh(1/mo) 

x [1 -- exp(--mo)]{~ (1) + ~(2) + ~v(3)}. (45) 

t MATHEMATICA is a trademark of Wolfram Research Inc., 
Champaign, IL 61820, USA. 
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Here, I o = (c/2eo)lD~e)12 is the intensity of the incident 
beam. v L is the volume of the Laue-Laue crystal. 
( 1 / m o ) [ 1 -  e x p ( - m o )  ], with mo = lzelo(u --F v), i s  a 
statistical dynamical pre-factor, which equals unity in 
the perfect-crystal case. 1 o, l h and lg are the crystal 
dimensions as indicated in Fig. 2. {~v ~)} denotes the 
expansion terms, in which contributions to extinction 
have been left out. The third-order term is quite lengthy, 
thus, for convenience, only ~v ~) and ~z) will be 
presented here - a MATHEMATICA-coded expression 
for ~'D (3) is available from the authors upon request. 

~x) = jCl [E2 + (1%1210gol 2 /loho12)#g ~ 

- 2E(lOhgl Iogol/lOhol)~g sin 4'z] (46) 
(2) 

~v h = 2j~ {--E3(l~%gll~Tgol/lOhol) 

× [g~(~g) cos4~z + g~(~g) sin 4~z] 

- E[(lohgl3lOgol/Irh, ol)lzg~h 

+ (lOhgllOgol3/lO~ol)#g#o -IOhgllOgollOohl#~#o] 

× [g~'(~g) cos 4~z - g~(~g) sin 4~z] 

-10gol21zolg~(~g)- IO~glZlOgol21zgt~h~Zo 

× [g~(~g) cos24~z + g~(~g) sin 24}z]}, (47) 

where [Opq[ = [Kpq[(lplq) ~/2 and # p = # ~ / l p .  The gC 
functions are given by 

c 2 g,(~g) = [(-2mg~g + mg~g + ~3) exp(mg) 

+ ( m  2 -- ~2) sin ~g + 2mg~gCOS~gl 

x [(m 2 + ~2)2 exp(mg)]-~ (48) 

,: 3 + ~2 + mg~)exp(mg)  g 2 ( ~ g )  = [ ( - -m~,  + mg 

+ (m2g - ~g~) cos ~g - 2mfigsin~g] 

x [(rag 2 + ~2)2 exp(mg)]- i  (49) 

where ~g = 2rtotglg and mg = #elg(V + W). 
The f parameters are: 

j~" = (rc/mh){1 + exp(--2m h) 

-- 2 exp(--mh)(cosh m h -- sinh mh) } 

j~ = (rr/mh){(1/2mh) +(1  + 1/2mh)exp(--2mh) 

+ (2 + 1/mh)(sinh m h -- cosh mh) exp(--mh) }, 

where m h = Idelh(U 71- W). 
The above expressions approach the correct perfect- 

crystal values (Thorkildsen & Larsen, 1998) when 
E ---~ 1. 

0.2 
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(c) (d) 
Fig. 3. Relative integrated power  as a function o f  the normal ized excitation error, ~g = 2rcceglg, for different long-range parameters ,  E. It/oh I = 0.1, 

Irlgol = I%1 = 0.28. The short-range parameter  is chosen such that r/Aoh = 0.1 and the invariant triplet phase sum is @z = 45°. (a) E = 1, 
#o = #h = #g = 0; (b) E = 0.9, #o = lzh = 0.19, #g = 0.024; (C) E = 0.5, #o = #h = 0.75, #g = 0.093; (d) E = 0.1, /zo = #h = 0.99, 
#g = 0.12. 
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5. Discussion 
Using the above results, we may assess the influence of  
crystal imperfection on the @ profiles. The plots are given 
in terms of  integrated power relative to the kinematical 
value. However, since the incoherent parts of  the 
scattering are not taken into consideration in the present 
treatment, this does not ensure a relative two-beam level 
at zero - as for the perfect-crystal case. 

It is clear that the dynamical perturbation due to three- 
beam interaction will decrease as the crystal imperfection 
increases. This is illustrated in F i g .  3 f o r  a crystal having 

different values of the long-range parameter E. The 
calculations are carried out for an anisotropic sample in 
which l o = l h = 1 lg but where the intrinsic strengths o f  

the reflections (i.e. the Kpq parameters) are the same. The 
profile in Fig. 3(a) represents the perfect-crystal case in 
which the scattering is purely coherent. Reducing the 
value of  E, we simultaneously increase the values of  the 
'effective absorption' parameters #o,/Zg, #h. For the case 
of  E -  0.9 (Fig. 3b), representing a slightly distorted 
crystal, we notice the resulting shift towards decreasing 
values of  relative integrated power. This is due to the 
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missing incoherent contributions. The profile asymmetry 
is fading but it should in principle be possible to extract 
reliable phase information for this case. When further 
reducing the value of E to 0.5 (Fig. 3c), the dynamical 
perturbation due to three-beam interaction diminishes as 
the coherent contribution to the total scattered power is 
reduced. In this case, the invariant phase information may 
be difficult to extract. However, one could still, in 
favourable cases, be able to separate between 4'z = 0"> 
and 4'z = 180° in a centrosymmetric case. This is 
illustrated in Fig. 4. Finally, for heavily distorted crystals 
- like case (d) in Fig. 3 - no dynamical effects are visible 
at all. Similar trends are found for other crystal 
geometries and reflection strengths. 

An interesting feature to be noted is the dependence of 
sin 4'z in equation (46), which occurs to first order. For 
the perfect-crystal case, such dependence is not evident 
until the second order in the series expansion. For cases 
in which the invariant triplet phase sum is close to 90 °, 
this term becomes increasingly important and may result 
in a profile reversal• This is seen in Fig. 5 for r/l = 0.5, 
case (d), where the dynamical perturbation is clearly 
visible. The same situation is shown in Fig. 6 - but now 
with 4'z = -9 i f> .  For such a case, no reversal is 
observed. The dynamical perturbation in Fig. 6(d) is 
however somewhat stronger than the corresponding case 
in Fig. 5 and it should hence be possible to assign the 

correct triplet phase to the profiles. This shows again the 
importance of always measuring the Friedel-related 
triplets in experiments (Weckert & Hiimmer, 1990). 

6 .  C o n c l u s i o n s  

We have shown that the concepts of the statistical 
dynamical theory can be implemented also for the three- 
beam case. The calculations confirm that dynamical 
perturbation effects are observable in 'mosaic' crystals. 
In addition, we have found that ~ curves involving a 
phase sum near 90 ° may experience a profile reversal 
depending on the degree of crystal imperfection. 

The work extends the application of the statistical 
dynamical theory. Questions related to actual physical 
models, cf Kato (1976b, 1982), for the defect structure 
of the crystal, leading to estimates for the statistical 
quantities E and r, have not been addressed. Because of 
the lack of variety of such models, it is difficult to verify 
the consequences of the various approximations used in 
the theory. The assumptions r << AlE and isotropy of E 
seem to be the most crucial ones when it comes to the 
question of obtaining reliable phase information from 
profiles in non-perfect crystals. It is clear that a deeper 
understanding of the role played by the statistical 
parameters is necessary for further development of the 
theory. Some other points should be mentioned: 
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(i) One has to extend the calculations to include the 
contributions from incoherent scattering events, thereby 
assessing the total wave fields generated inside the 
crystal. It is of importance to clarify whether the mixed 
coherent and incoherent contributions carry any phase 
information. 

(ii) We have focused our attention on the integrated 
power. The shape of the lp profiles is then closely linked 
to the functions g~'(~g) and g~(~g), c f  equations (48) and 
(49). A damping and broadening of the profiles will 
occur with increasing value of the parameter mg. 
However, the approximations used impose the restriction 
mg << 1, and g~ and g~ will change little from the perfect- 
crystal case. However, a proper discussion related to the 
actual shape of the profiles might explicitly involve a 
model for the correlation function and not only its 
statistical behaviour. 

(iii) For a finite crystal, its geometry will also influence 
the results. It is not clear at the moment how to generalize 
the calculations to a crystal of  a more arbitrary shape or 
the influence of finiteness on the parameters of  the 
statistical dynamical theory. Becker & AI Haddad (1990) 
claim that for the statistical assumptions to be valid 
l >> A, where l is an average dimension of the crystal. 
On the other hand, our series-expansion technique is 
limited to cases where l < A. This is another question to 
be addressed in forthcoming works. 
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